منابع مشابه
An Improved Chen-ricci Inequality
Oprea proves that Ric(X) ≤ n−1 4 (c + n||H||) improving the Chen-Ricci inequality for Lagrangian submanifolds in complex space forms by using an optimization technique. In this article, we give an algebraic proof of the inequality and completely classify Lagrangian submanifolds in complex space forms satisfying the equality, which is not discussed in Oprea’s paper.
متن کاملAn Improved Inequality Related to Vizing's Conjecture
Vizing conjectured in 1963 that γ(G2H) > γ(G)γ(H) for any graphs G and H. A graph G is said to satisfy Vizing’s conjecture if the conjectured inequality holds for G and any graph H. Vizing’s conjecture has been proved for γ(G) 6 3, and it is known to hold for other classes of graphs. Clark and Suen in 2000 showed that γ(G2H) > 12γ(G)γ(H) for any graphs G and H. We give a slight improvement of t...
متن کاملVietoris Bisimulations
Building on the fact that descriptive frames are coalgebras for the Vietoris functor on the category of Stone spaces, we introduce and study the concept of a Vietoris bisimulation between two descriptive modal models, together with the associated notion of bisimilarity. We prove that our notion of bisimilarity, which is defined in terms of relation lifting, coincides with Kripke bisimilarity (w...
متن کاملImproved Cramer-Rao Inequality for Randomly Censored Data
As an application of the improved Cauchy-Schwartz inequality due to Walker (Statist. Probab. Lett. (2017) 122:86-90), we obtain an improved version of the Cramer-Rao inequality for randomly censored data derived by Abdushukurov and Kim (J. Soviet. Math. (1987) pp. 2171-2185). We derive a lower bound of Bhattacharya type for the mean square error of a parametric function based on randomly censor...
متن کاملImproved logarithmic-geometric mean inequality and its application
In this short note, we present a refinement of the logarithmic-geometric mean inequality. As an application of our result, we obtain an operator inequality associated with geometric and logarithmic means.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Approximation Theory
سال: 2015
ISSN: 0021-9045
DOI: 10.1016/j.jat.2014.08.005